SHP-1 negatively regulates neuronal survival by functioning as a TrkA phosphatase
نویسندگان
چکیده
Nerve growth factor (NGF) mediates the survival and differentiation of neurons by stimulating the tyrosine kinase activity of the TrkA/NGF receptor. Here, we identify SHP-1 as a phosphotyrosine phosphatase that negatively regulates TrkA. SHP-1 formed complexes with TrkA at Y490, and dephosphorylated it at Y674/675. Expression of SHP-1 in sympathetic neurons induced apoptosis and TrkA dephosphorylation. Conversely, inhibition of endogenous SHP-1 with a dominant-inhibitory mutant stimulated basal tyrosine phosphorylation of TrkA, thereby promoting NGF-independent survival and causing sustained and elevated TrkA activation in the presence of NGF. Mice lacking SHP-1 had increased numbers of sympathetic neurons during the period of naturally occurring neuronal cell death, and when cultured, these neurons survived better than wild-type neurons in the absence of NGF. These data indicate that SHP-1 can function as a TrkA phosphatase, controlling both the basal and NGF-regulated level of TrkA activity in neurons, and suggest that SHP-1 regulates neuron number during the developmental cell death period by directly regulating TrkA activity.
منابع مشابه
Regulation of SHP-1 tyrosine phosphatase in human platelets by serine phosphorylation at its C terminus.
SHP-1 is a Src homology 2 (SH2) domain-containing tyrosine phosphatase that plays an essential role in negative regulation of immune cell activity. We describe here a new model for regulation of SHP-1 involving phosphorylation of its C-terminal Ser591 by associated protein kinase Calpha. In human platelets, SHP-1 was found to constitutively associate with its substrate Vav1 and, through its SH2...
متن کاملIncreased expression of SHP-1 is associated with local recurrence after radiotherapy in patients with nasopharyngeal carcinoma
BACKGROUND Nasopharyngeal carcinoma (NPC) is a major cancer in southern China. Src homology phosphatase-1 (SHP-1) is a tyrosine phosphatase that regulates growth, differentiation, cell cycle progression, and oncogenesis. We determined the clinical significance of SHP-1 expression in the tumours of NPC patients from southern China who were treated with radiotherapy. PATIENTS AND METHODS SHP-1 ...
متن کاملRole of the protein tyrosine phosphatase SHP-1 (Src homology phosphatase-1) in the regulation of interleukin-3-induced survival, proliferation and signalling.
The tyrosine phosphatase SHP-1 (Src homology phosphatase-1) has been widely implicated as a negative regulator of signalling in immune cells. We have investigated in detail the role of SHP-1 in interleukin-3 (IL-3) signal transduction by inducibly expressing wild-type (WT), C453S (substrate-trapping) and R459M (catalytically inactive) forms of SHP-1 in the IL-3-dependent cell line BaF/3. Expres...
متن کاملNerve growth factor-independent neuronal survival: a role for NO donors.
Because of the limited therapeutic applications of nerve growth factor (NGF), there has been increasing focus on the development of pharmacological tools to bypass the requirement of NGF for the activation of the TrkA tyrosine kinase receptor neuronal survival pathway. In this issue of Molecular Pharmacology, the work by Culmsee et al. (p. 1006) shows that NGF-independent activation of TrkA by ...
متن کاملSrc homology 2 (SH2) domain containing protein tyrosine phosphatase-1 (SHP-1) dephosphorylates VEGF Receptor-2 and attenuates endothelial DNA synthesis, but not migration*
BACKGROUND Vascular endothelial growth factor receptor-2 (VEGFR-2, KDR), a receptor tyrosine kinase, regulates mitogenic, chemotactic, hyperpermeability, and survival signals in vascular endothelial cells in response to its ligand vascular permeability factor/ vascular endothelial growth factor (VPF/VEGF). SHP-1 is a protein tyrosine phosphatase known to negatively regulate signaling from recep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 163 شماره
صفحات -
تاریخ انتشار 2003